

Vladimíra Kvasnicová

Isomers are molecules of <u>the same</u> <u>molecular formula</u>

but differing in their structures

A) structural isomers (different constitution of molecules)

B) stereoisomers (different configuration of molecules = spatial arrangement)

Important terms

<u>constitution</u> = the type and the arrangement of both atoms and bonds in a molecule; *it doesn't describe spatial arrangement*

<u>conformation</u> = any of the large number of possible shapes of a molecule resulting from rotation of one part of the molecule about a single bond

<u>configuration</u> = the spatial arrangement of atoms or groups in a molecule

<u>saturated hydrocarbon</u> = hydrocarbon in which there are no <u>carbon-carbon</u> double or triple bonds (all carbon atoms are bound to the maximum number of hydrogen atoms)

Important types of isomers

A) structural isomers (different constitution of molecules)

1. <u>different position</u> of

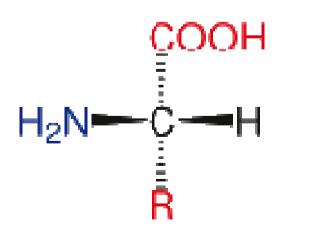
- multiple bonds
- substituents (functional groups)
- side chains (branches)

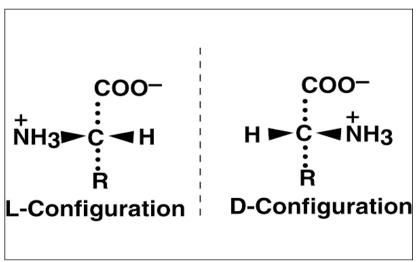
but- <mark>2</mark> -ene	/	but- <mark>1</mark> -ene
1-chloropropane	/	2-chloropropane
o-xylene	/	m-xylene
2,2-dimethylbutane	/	2,3-dimethylbutane
pentane	/	2-methylbutane (isopentane)

Important types of isomers

A) structural isomers (different constitution of molecules)

- 2. <u>different order of atoms</u>: different derivatives propanal / propanone
- 3. <u>keto-enol isomers</u> (tautomers)


propanone / propene-2-ol


bases of nucleic acids (e.g. uracil)

Important types of isomers

B) stereoisomers (different configuration of molecules)

- <u>cis-trans isomers</u> (geometrical isomers)
 <u>cis</u>-but-2-ene
 <u>trans</u>-but-2-ene
- 2. <u>enantiomers</u> (optical isomers = mirror images) *L-amino acid*

Copyright © 1997 Wiley-Liss, Inc.

http://www.imb-jena.de/~rake/Bioinformatics_WEB/gifs/amino_acids_chiral.gif (October 2007)

Homework

Draw structural formulas of all possible isomers desribed by given molecular formulas:

1) C₅H₁₂

2) $C_5 H_{10} O$

IUPAC (systematic) names of hydrocarbon derivatives can be of two types:

CH₃CH₂CH₂-OH, CH₃CH₂-CHO, CH₃-CO-CH₃, CH₃CH₂-COOH, CH₃CH₂-O-CH₃ alcohol aldehyde ketone carboxylic acid ether

1. <u>using substitutional principle</u> <u>hydrocarbon name</u> + <u>suffix</u>

(propanol, propanal, propanone, propanoic acid, NONE)

2. using radical functional principle alkyl name + derivative name

(propyl alcohol, NONE, dimethyl ketone, NONE, ethyl methyl ether)